دیوار برشی چیست؟
دیوار برشی
با نیروهای جانبی مؤثر بر یک سازه ( در اثر باد یا زلزله ) به طرق مختلف مقابله می شود که اثر زلزله بر ساختمانها از سایر اثرات وارد بر آنها کاملا متفاوت می باشد . ویژگی اثر زلزله در این است که نیروهای ناشی از آن به مراتب شدیدتر و پیچیده تر از سایر نیروهای مؤثر می باشند . عناصر مقاوم در مقابل نیروهای فوق شامل قاب خمشی ، دیوار برشی و یا ترکیبی از آن دو می باشند . استفاده از قاب خمشی به عنوان عنصر مقاوم در مقابل نیروهای جانبی بخصوص اگر نیروهای جانبی در اثر زلزله باشند احتیاج به جزئیات خاصی دارد که شکل پذیری کافی قاب را تأمین نماید .این جزئیات از لحاظ اجرایی غالبا دست و پاگیر بوده و در صورتی می توان از اجرای دقیق آنها مطمئن شد که کیفیت اجرا و نظارت در کارگاه خیلی بالا باشد از لحاظ برتری می توان گفت که دیوار برشی اقتصادی تر از قاب می باشد و تغییر مکانها را کنترل می کند در حالی که برای سازه های بلند قاب به تنهایی نمی تواند در این زمینه جوابگو باشد . حال به ذکر چند نمونه از دیوارهای برشی می پردازیم :
۱-دیوار های برشی فولادی : بعضی مواقع ورقهای فولادی به عنوان دیوارهای برشی بکار می روند . برای جلوگیری از کمانش موضعی چنین دیوارهای برشی فولادی لازم است از تقویت کننده های قائم و افقی استفاده شود.
۲-دیوارهای برشی مرکب : دیوارهای برشی مرکب شامل : ورقها ی تقویت شده فولادی مدفون در بتن مسلح ، خرپاهای ورق فولادی مدفون در داخل دیوار بتن مسلح و دیوارهای مرکب ممکن دیگر ، که تماما با یک قاب فولادی و یا با یک قاب مرکب تؤام هستند می شود .
۳- دیوارهای برشی مصالح بنایی : از دیر زمان در ساختمانهای مصالح بنایی از دیوارهای مصالح بنایی توپر غیر مسلح استفاده می شده است ولی روشن شده است که این دیوارها از نقطه نظر مقاومت در مقابل زلزله ضعف دارند و لذا اکنون به جای آنها از دیوارهای برشی مسلح نظیر دیوارهای با آجر تو خالی و پر شده با دوغاب استفاده می شود . ۴-دیوارهای برشی بتن مسلح : نوع دیگری از دیواهای برشی ، دیوارهای برشی بتن مسلح است که در این مقاله به آن می پردازیم. یکی از مطمئن ترین روشها برای مقابله با نیروهای جانبی استفاده از دیوار برشی بتن مسلح است . دیوار برشی به عنوان یک ستون طره بزرگ و مقاوم در برابر نیروهای لرزه ای عمل می کند و یک عضو ضروری برای سازه های بتن مسلح بلند و یک عضو مناسب برای سازه های متوسط و کوتاه می باشد .
انواع دیوار برشی بتن مسلح :
دو نوع دیوار برشی بتن مسلح وجود دارد :
1-دیوار برشی در جا :در دیوار برشی در جا به منظور حفظ یکنواختی و پیوستگی میلگرد های دیوار ، به قاب محیطی قلاب می شوند .
2-دیوار برشی پیش ساخته : در دیوار های برشی پیش ساخته یکنواختی و پیوستگی با تهیه کلیه های ذوزنقه شکل در طول لبه های پانل و یا از طریق اتصال پانلها به قاب توسط میخهای فولادی صورت می گیرد . تأثیر شکل دیوار : تعبیه بال در دیوارها برای پایداری و شکل پذیری سازه بسیار مفید می باشد .
نیروهایی که به دیوارهای برشی وارد می شوند :
به طور کلی دیوار های برشی تحت نیروهای زیر قرار می گیرند :
1-نیروی برشی متغیر که مقدار آن در پایه حداکثر می باشد .
2-لنگر خمشی متغیر که مقدار آن مجددا در پای دیوار حداکثر است و ایجاد کشش در یک لبه ( لبه نزدیک به نیروها و فشار در لبه متقابل می نماید ) با توجه به امکان عوض شدن جهت نیروی باد یا زلزله در ساختمان ، کشش باید در هر دو لبه دیوار در نظر گرفته شود.
3-نیروی محوری فشاری ناشی از وزن طبقات که روی دیوار برشی تکیه دارد .
توجه : در صورتی که ارتفاع دیوار برشی کم باشد ، غالبا نیروی برشی حاکم بر طراحی آن خواهد بود لیکن اگر ارتفاع دیوار برشی زیاد باشد لنگر خمشی حاکم بر طراحی آن خواهد بود . به هر حال دیوار باید برای هر دو نیروی فوق کنترل و در مقابل آنها مسلح گردد.
طراحی دیوار برشی در مقابل برش :
اگر Vu تلاش برشی نهایی در مقطع مورد طراحی باشد بر طبق آیین نامه ایران باید Vu=5υchd=φchd(fc)^0.5 تعیین نیروی برشی مقاوم نهایی بتن :
الف- حالتی که دیوار تحت اثر برش یا تحت اثر تؤام برش و فشار قرار دارد Vc=υcbwd:
ب- حالتی که دیوار تحت اثر برش و کشش فرار دارد : Vc=υc(1+Nu/(3Ag))bwd (A) در این رابطه کمیت Nu/Ag بر حسب ( N/mm^2 ) می باشد و Nuدر این رابطه منفی می باشد حال اگر محاسبه نیروی برشی مقاوم نهایی بتن ( Vc) با جزئیات بیشتر مورد نظر باشد آنرا برابر با کمترین مقدار به دست آمده از دو رابطه زیر در نظر گرفته می گیریم و Vc=1.65υchd + (Nud)/(5Lw) وVc=(0.3υc+(Lw(0.6υc+0.15Nu/(Lwh)))/(Mu/Vu-Lw/2))hd Nu
نیروی محوری برای فشار مثبت و برای کشش منفی است چنانچه Mu/Vu-Lw/2 منفی باشد رابطه A بکاربرده نمی شود . نیروی برشی مقاوم نهایی Vc برای کلیه مقاطعی که در فاصله ای کمتر از کوچکترین دو مقدار Lw/2 و hw/2 از پایه دیوار قرار دارند برابر با مقاومت برشی مقطع در کوچکترین این دو مقدار در نظر گرفته می شود .
نیروی برشی مقاوم نهایی آرماتور ها (Vs) از رابطه زیر محاسبه می شود Vs = φsAvfy d/S2 Av سطح مقطع آرماتور برشی در امتداد برش و در طول فاصله S2 می باشد چنانچه مقدار Av را در اختیار نداشتیم می توان Vs را از رابطه زیر به دست آورد Vs=Vu-Vc سپس به کمک رابطه فوق Av را به دست می آوریم . برای تأمین برش مقاوم Vsعلاوه بر آرماتور های برش افقی Av آرماتور های برشی قائم نیز باید در دیوار پیش بینی شود آرماتور گذاری در دیوار مطابق زیر انجام می شود : چنانچه Vu=0.0025 فاصله میلگرد های (S2 ) از هم نباید از مقادیر زیر بیشتر باشد : ρn= 3h Lw/5 350سطح مقطع کل بتن در امتداد برش / سطح مقطع آرماتور برشی در امتداد عمود بر برش نباید کمتر از ۰.۰۰۲۵ و یا کمتر از مقدار زیر در نظر گرفته شود : ρn=0.0025+0.5(2.5-hw/Lw)( ρh-0.0025) لزومی ندارد ρn>ρh در نظر گرفته شود . طراحی دیوار برشی در مقابل خمش : چنانچه ارتفاع دیوار برشی بلندتر از دو برابر عمق آن باشد مقاومت خمشی آن مشابه تیری که آرماتور گذاری آن در لبه های آن متمرکز است محاسبه می شود .
مقاومت خمشی Mu یک دیوار برشی مستطیلی نظیر دیوار برشی این چنین محاسبه می شود : Mr=0.5AsφsFyLw(1+Nu/(AsφsFy))(1-C/Lw) در رابطه فوق : Mr مقاومت خمشی نهایی دیوار :Nu نیروی محوری موجود در مقطع دیوار: As سطح مقطع کل آرماتور های قائم دیوار Fy : تنش تسلیم فولاد : Qs ضریب تقلیل ظریب فولاد Lw : طول افقی دیوار مقدار C/Lw از رابطه زیر به دست می آید C/Lw=(w+α)/(2w+0.85β۱) مقدار β ۱ از روابط زیر به دست می آید : Fc=55 N/mm^2 → β۱=۰.۶۵، w=As/(Lwh)*(φsFy)/( φcfc) φs=0.85 φc=0.6 a=Nu/(Lw*h*φcfc) h عرض دیوار : Fc مقاومت فشاری بتن ابتدا با توجه به آرماتور های قائم حداقل که به علت نیازهای برشی در دیوار تعبیر شده اند ظرفیت خمشی مقطع را به دست می آوریم . همواره باید ظرفیت خمشی بزرگتر یا مساوی نیروی خمشی نهایی دیوار باشد.
( Mr>=Mu) چنانچه ظرفیت خمشی کمتر از نیروی خمشی دیوار به دست آید باید یا با کاهش فواصل یا افزایش قطر آرماتور های قائم مقدار As آنقدر افزایش یابد تا خمش بزرگتر از لنگر خمشی مقطع گردد . شکست برشی لغزشی : در شکست برشی لغزشی ، دیوار برشی به طور افقی حرکت می کند برای جلوگیری از این نوع شکست آرماتورهای تسلیح قائم که به طور یکنواختی در دیوار قرار گرفته اند مؤثر خواهد بود و تسلیح قطری نیز می تواند مؤثر باشد . در قسمت زیر انواع مودهای شکست یک دیوار برشی طره ای گفته شده است : الف ـ گسیختگی خمشی ب ـ شکست لغزشی ج ـ شکست برشی د ـ دوران پی دیوارهای برشی با بازشو ها: شکست برشی یک دیوار برشی با بازشو ها ، اگرچه می توان با به کار بردن مقدار زیادی خاموت باعث اتلاف انرژی شد اما نمی توان انتظار شکل پذیری زیادی از آن داشت بنابراین بهتر است در چنین شرایطی از تسلیح قطری استفاده کرد .
دیوار برشی راهحل مقابله با زلزله
علم مهندسی زلزله ساختمانها در سال ۱۹۵۰ میلادی هم زمان با فعالیتهای گسترده بازسازی پس از پایان جنگ جهانی دوم شروع گردید.
تلاشهای اولیه به منظور مقاومسازی ساختمانها، براساس فرضیاتی نه چندان دقیق بر روی واکنش سازه در اثر ارتعاش زمین صورت گرفت که بدلیل کمبود ابزار تحلیل مناسب و سوابق اطلاعاتی کافی در مورد زلزله، روشهای ناقصی بودند. مشاهده عملکرد سازهها در هنگام وقوع زلزله و همچنین مطالعات تحلیلی و کارهای آزمایشگاهی و جمعآوری اطلاعات مربوط به زمینلرزههای چهار دهه اخیر، امکان ارایه روشی مدرن برای طراحی سازههای مقاومت در برابر زلزله را فراهم آورده است.
در طی دهه ۱۹۵۰، سیستم ”قاب خمشی شکلپذیر“ از سیستم ”قاب خمشی“ که در آن زمان تنها سیستم مقاوم در ساختمانهای چندین طبقه بتنی و فولادی بود ، منشا گرفت و به دلیل رفتار مناسب این سیستم در برابر زلزله، کاربرد آن تا اواخر دهه ۱۹۷۰ ادامه یافت. در طی این مدت سیستمهای جدیدتر و کارآمدتری نظیر دیوارهای برشی و یا خرپاها برای تحمل فشار جانبی باد در ساختمانهای بلند رایج شدند و تقریباً روش ساخت به صورت قاب تنها در این ساختمانها، کنار گذاشته شد.
تحقیقات تجربی و تئوری انجام شده در سراسر جهان طی دهههای ۶۰ و ۷۰ و ۸۰ میلادی منجر به جمعآوری اطلاعات مفصلی در رابطه با واکنش سیستمهای ساختمانی دارای دیوار برشی در هنگام زلزله شد که این مطالعات بر اهیمت قاب خمشی شکلپذیر در کاهش بار زلزله تأکید داشتند. با توجه به اینکه سازههای دارای صلبیت بیشتر (یعنی شکلپذیری کمتر) در هنگام زلزله، تحت نیروهای به مراتب قویتری قرار میگیرند و از آنجا که وجود دیوار برشی در ساختمانها باعث افزایش صلبیت آنها میشود، کاربرد دیوارهای برشی، نامناسب تشخیص داده شد و بیشتر ساختمانها به روش قاب خمشی ساخته شدند. برای نمونه در برخی از کشورها خصوصاً کشورهای توسعه نیافته بدون رعایت حداقل ضوابط شکلپذیری، قابهای ساختمانی از انواع شکننده و فاقد قابلیت تحمل زلزلههای قوی بدون وارد آمدن آسیب شدید به ساختمان، اجرا شدند و همانگونه که در زمین لرزههای چهار دهه اخیر مشاهده شد، بسیاری از ساکنین خود را در ”تلههای مرگ“ گرفتار کردند. آنچه در زیر میآید، بیان خلاصهای از رفتار سازههای دیوار برشی است که در حوادث زمین لرزههای ۳۰ سال اخیر قرار داشتهاند.
زلزله ماه مه سال ۱۹۶۰ شیلی:
اولین گزارش در ارتباط با رفتار ساختمانهای دارای دیوار برشی، مربوط به این زلزله میباشد تجربیات در زلزله شیلی، کاربرد دیوارهای برشی در زلزلههای شدید را درکاهش خسارات سازهای و غیرسازهای، تأیید میکند. در چند مورد، دیوارهای برشی ترک خوردهاند اما رفتار کلی ساختمان تغییر نکرده است.
زلزله ماه ژوئیه سال ۱۹۶۳ یوگسلاوی:
در این زمینلرزه، دیوارهای بتنی غیرمسلح بکار رفته (مثلاً در هسته ساختمان و یا در طول آن) توانستند با مهار کردن پیچش بین طبقات از خسارات عمده جلوگیری کنند و تنها در چند مورد استثنائی قسمتهای تحتانی تیرهای محیطی، در اثر لرزشهای شدید، جدا شده بود.
زلزله ماه فوریه سال ۱۹۷۱ سن فرناندو (کالیفرنیا):
پس از وقوع این زلزله، ساختمان ۶ طبقه مرکز پزشکی IN-DIAN HILL با سیستم مرکب قاب و دیوار برشی، تنها نیاز به ترمیم داشت در حالیکه ساختمان ۸ طبقه بیمارستان HOLLY CROSS در کنار آن بدلیل اینکه سیستم قاب تنها در آن بکار رفته بود. به شدت آسیب دید و نهایتاً تخریب شد.
زلزله ماه مارس سال ۱۹۷۷ بخارست (رومانی):
در این زلزله که ۳۵ ساختمان چندین طبقه به طور کامل ویران شد، صدها ساختمان بلند و برجهای آپارتمانی که در آنها از دیوارهای بتنی در امتداد کریدورها و یا سرتاسر ساختمان استفاده شده بود، بدون خسارات عمده، سالم و قابل استفاده باقی ماندند.
زلزله ماه اکتبر سال ۱۹۸۵ مکزیکوسیتی (مکزیک):
ویرانیهای این زلزله در مکزیک، به خوبی عواقب عدم استفاده از دیوارهای برشی تقویت کننده را نشان داد. در این زمینلرزه حدود ۲۸۰ ساختمان چند طبقه با سیستم قاب تنها، به دلیل نداشتن دیوار برشی به طور کامل تخریب شده و از بین رفتند.
زلزله ماه دسامبر سال ۱۹۸۸ ارمنستان:
زلزله ارمنستان در سال ۱۹۸۸ دلیل دیگری بر نتایج منفی حذف دیوارهای برشی در ساختمانهای چندین طبقه است. در این زمینلرزه ۷۲ ساختمان به دلیل نداشتن دیوار برشی، به کلی ویران شده و ۱۴۹ ساختمان در چهار شهر Leninakam و Spitak و Kirovakan و Stepomavan دچار آسیبهای شدید شدند. با این وجود کلیه ۲۱ ساختمان با پانلهای بزرگ موجود در این چهار شهر هیچگونه آسیبی ندیده و در میان ویرانههای ساختمانهای دیگر، پابرجا ماندند.
در دهههای اخیر روشهای شکلپذیر ساختن سیستمهای سازهای که گاهی قابلیت افزایش مقاومت در برابر زلزله را نداشتند مورد توجه قرار گرفت که ضمن ایجاد احساس امنیت کاذب، هیچگونه بازدهی کافی نداشتند. در ابتدای پیدایش علم مهندسی زلزله، بسیاری از متخصصین مفهوم شکلیپذیری (ductility) را با انعطافپذیری (flexibility) اشتباه کردند و در نتیجه سازههای انعطافپذیر زیادی در مناطق زلزلهخیز جهان ساخته شد. با اینکه تعدادی از آنها شکلپذیر بودند اما هنگام وقوع زلزله، در اثر پیچش زیاد بین طبقات، خسارات غیر قابل جبرانی به این ساختمانها وارد شد. در ساختمانسازی امروزی که تنها ۲۰ درصد کل مخارج مربوط به هزینه در سیستم سازهای و مابقی صرف مخارج کارهای معماری و تأسیسات برقی و مکانیکی میشود. انتخاب یک سیستم سازهای مناسب که امنیت جانی و مالی افراد را در برداشته باشد از اهمیت ویژهای برخوردار بوده و یکی از راههای رسیدن به چنین امنیتی استفاده از دیوارهای برشی در سازههای بتنی میباشد.
جزئیات شکلپذیری دیوارهای برشی که بعد از مطالعات اخیر، در برخی آئیننامهها ذکر شدهاند هنوز در زلزلههای واقعی مورد آزمایش قرار نگرفتهاند. بدون شک استفاده از این جزئیات، باعث شکلپذیرتر شدن دیوارها میشود ولی میزان دقیق بهرهوری از شکلپذیری باید در زلزلههای واقعی و یا مطالعات پیچیده پاسخهای دینامیکی دیوار در اثر زلزله مشخص شود. طراحی دیوار به صورت شکلپذیر هنگامی صحیح است که مقاومت آن از طریق خمش صورت بگیرد نه از طریق برش و همچنین ظرفیت برشی دیوار در هر مقطع از برش آن مقطع که بر مبنای مقاومت خمشی دیوار به دست میآید، بیشتر باشد. علاوه بر این نه تنها ظرفیت برشی نهائی بلکه رفتار عضو بین حالت شروع ترکخوردگی و حالت گسیختگی برشی نیز مشخص باشد.
نتیجه
با اینکه سازههای دیوار برشی در ۳۰ سال اخیر، از فولاد کمتر از مقدار توصیه شده توسط آئیننامههای فعلی آمریکا برخوردار بودهاند اما با این وجود در برابر زلزلههای این سه دهه به خوبی مقاومت کردهاند. بررسیهای انجام شده از سال ۱۹۶۳ به بعد روی عملکرد این سازهها، هنگام وقوع زلزله، نشان دادهاند که با وجود مشاهده ترکهای مختلف، حتی یک مورد ویرانی یا تلفات جانی در سازههای با دیوار برشی گزارش نشده است. اغلب خسارات ساختمانهای با سیستم قاب، در اثرپیچش طبقات (و در نتیجه گسیختگی برشی ستونها) بوده است. البته این دلیل بر عدم مقاومت سازههای قابی طرح شده به روشهای جدید، در برابر زلزله نمیباشد بلکه هدف نمایش قابلیت بالای دیوارهای برشی حتی در صورت آرماتورگذاری با شیوههای قدیمی و غیر علمی است. با مشاهده ویرانی ساختمانها تحت زلزلههای اخیر (۱۹۷۲ نیکاراگوئه و ۱۹۸۵ مکزیک و ۱۹۸۸ ارمنستان)، تأکید بر استفاده از دیوارهای برشی (مخصوصاً در ساختمانهای مسکونی) امری معقول به نظر میرسد و نشان میدهد که ساخت سازههای بدون دیوار برشی در مناطق با زلزلهحیزی شدید یک نوع ریسک محسوب شده که با توجه به عواقب ناگوار آن قابل توصیه نمیباشد.
ترمیم و تقویت سازه های بتنی توسط دیوار برشی
چکیده
دیوار برشی فولادی برای مقاوم سازی ساختمان های فولادی در حدود ۱۵ سال اخیر مورد توجه خاص مهندسان سازه قرار گرفته است. ویژگی های منحصر به فرد آن باعث جلب توجه بیشتر همگان شده است ، از ویژگی های آن اقتصادی بودن ، اجرای آسان ، وزن کم نسبت به سیستم های مشابه ، شکل پذیری زیاد ، نصب سریع ، جذب انرژی بالا و کاهش قابل ملاحظه تنش پسماند در سازه را می توان نام برد. تمام دلایل ما را به این فکر آن وا داشت که استفاده از آن را درترمیم ساختمان های بتنی مورد مطالعه قراردهیم. چون این سیستم دارای وزن کم بوده ، به سازه بار اضافی وارد نکرده و حتی با اتصالاتش باعث تقویت تیر وستونهای اطراف خود می شود. همچنین این سیستم نیازی به تجهیزات خاص ندارد و می توان بدون تخلیه ساختمان و تخریب اعضا سازه ای به بقیه اجزای سازه ای وصل شود. البته طراحی این سیستم در ساختمان های بتنی بغیر از حالت ترمیمی اقتصادی به نظر نمی آید. در این مقاله توضیحات اولیه ای از دیوار برشی فولادی جهت آشنایی بیشتر ارائه شده ، و در قسمت های بعدی بررسی رفتار پانلهای برشی فولادی LYP1 در تقویت وترمیم سازه های بتنی مورد مطالعه قرار خواهد گرفت و تفاوت آن با سیستم بادبندی مشابه مورد توجه قرار خواهد گرفت ، و در آخر نتایج آزمایشات بررسی خواهند شد.
۱- مقدمه
دیوارهای برشی فولادی SSW2 برای گرفتن نیروهای جانبی زلزله و باد در ساختمان های بلند در سالهای اخیر مطرح و مورد توجه قرار گرفته است . این پدیده نوین که در جهان به سرعت رو به گسترش می باشد در ساخت ساختمان های جدید و همچنین تقویت ساختمان های موجود به خصوص در کشورهای زلزله خیزی همچون آمریکا و ژاپن بکار گرفته شده است . استفاده از آنها در مقایسه با قابهای ممان گیر تا حدود ۵۰% صرفه جویی در مصرف فولاد را در ساختمان ها به همراه دارد.
دیوار های برشی فولادی از نظر اجرائی ، سیستمی بسیار ساده بوده و هیچگونه پیچیدگی خاصی در آن وجود ندارد . لذا مهندسان ، تکنسین ها و کارگران فنی با دانش فنی موجود و بدون نیاز به کسب مهارت جدید می توانند آنرا اجرا نمایند . دقت انجام کار در حد دقت های متعارف در اجرای سازه های فولادی بوده و با رعایت آن ضریب اطمینان اجرائی به مراتب بالاتر از انواع سیستم های دیگر می باشد . با توجه به سادگی و امکان ساخت آن در کارخانه و نصب آن در محل ، سرعت اجرای سیستم بالا بوده واز هزینه های اجرائی تا حد بالایی زیادی کاسته می شود .
سیستم از نظر سختی برشی از سخت ترین سیستم های مهاربندی که X شکل می باشد ، سخت تر بوده و باتوجه به امکان ایجاد باز شو در هر نقطه از آن ، کارائی همه سیستم های مهاربندی را از این نظر دارا می باشد .
همچین رفتار سیستم در محیط پلاستیک و میزان جذب انرژی آن نسبت به سیستم های مهار بندی بهتر است . در سیستم دیوار های برشی فولادی به علت گستردگی مصالح و اتصالات ، تعدیل تنش ها به مراتب بهتر از سیستمهای مقاوم دیگر در برابر بارهای جانبی مانند قاب ها وانواع مهاربندی که معمولأ در آنها مصالح به صورت دسته شده و اتصالات متمرکز می باشند ، صورت گرفته و رفتار سیستم بخصوص در محیط پلاستیک مناسب تر می باشد .
گزارش اولیه تحقیقات انجام شده در تابستان سال ۲۰۰۰ میلادی در آزمایشگاه سازه دیویس هال دانشگاه برکلی کالیفرنیا نشان می دهد ، ظرفیت دیوار های برشی فولادی برای مقابله با خطراتی مانند زلزله ، طوفان و انفجار در مقایسه با دیگر سیستم ها مثل قابهای ممان گیر ویژه حداقل ۲۵% بیشتر می باشد . در آزمایشگاههای تحقیقاتی استفاده گردیده است که ظرفیت آن حدودأ 6670KN می باشد . آزمایش های مذکور نشان می دهد ، دیوارهای برشی فولادی دارای شکل پذیری بسیار بالائی هستند . به لحاظ اهمیت موضوع بودوجه این تحقیقات که به منظور دستیابی به یک سیستم مطمئن جهت ساخت ساختمان های فدرال آمریکا برای آنکه بتوانند در مقابل خطراتی مانند زلزله ، طوفان و بمب مقاومت نمایند ، توسط بنیاد ملی علوم آمریکا و اداره خدمات عمومی آمریکا تأمین گردیده است .
1: شکلی از دیوار برشی فولادی در سازه های فولادی (با سخت کننده و بدون سخت)
2- ساختمان های ساخته شده با استفاده از دیوار برشی فولادی
اولین ساختمان ساخته شده با استفاده از این روش بیمارستانی در لس آنجلس به نام بیمارستان Sylmar بود. یکی از بزرگترین سازه های ساخته شده با سیستم دیوار برشی فولادی ساختمان شینجوکونومورا ۳ در توکیو است که این ساختمان دارای ۵۱ طبقه بوده و ارتفاع آن از سطح زمین ۲۱۱ متر است . ۵ طبقه آن درزیر زمین واقع بوده و ۲۷.۵ مترآن پایین تر از سطح زمین قرار دارد و ، برای اجتناب از بکارگیری دیوار برشی بتنی ، از سیستم دیوار برشی فولادی در هسته های مرکزی ساختمان که اطراف آسانسور ها ، پله ها و رایزرهای تاسیساتی می باشد ، استفاده گردید.
یکی از کاربردهای این پانلها در تقویت سازه های بتنی در ساختمان مرکز درمانی در چارلستون می باشد این سازه در اثر زلزله ۱۹۶۳ آسیب دیده بود این ساختمان متشکل از ساختمان های متعددی از یک تا پنج طبقه می باشد که زیر بنای آنها نزدیک به ۳۲۵۰۰ متر مربع است . برای تقویت این سازه از بهترین تیم طراحی وتحقیقاتی استفاده گردید . بعد از بررسی های فراوان این سیستم را با توجه به دلایل زیر مناسب دانستند :
• جلوگیری از اخلال در کار روزانه و کاهش مشکلات برای بیماران ، بعلت سرعت نصب آن
• جلوگیری از کاهش زیر بنای مفید و اتلاف فضاها
• پیش بینی امکان تغییرات در آینده ، زیرا در دیوار برشی فولادی به سادگی می توان تغییرات مورد نظر را اعم از
• جابجائی معماری و یا ایجاد بازشو به خاطر عبور تاسیسات داد
• جلو گیری از ازدیاد وزن سازه
به جز ساختمان های بالا سازه های فراوانی از جمله
ساختمان مرکزی ۵۴ طبقه بانک وان ملون در پیتسبورگ پنسیلوانیای آمریکا
ساختمان مسکونی ۵۱ طبقه واقع در سان فرانسیسکو
ساختمان ۲۵ طبقه در ادمونتون کانادا
ساختمان ۳۲ طبقه بایرهویچ هوس در لورکوزن آلمان (Byer-Hochhaus)
ساختمان ۲۰ طبقه دادگاه فدرال در سیاتل آمریکا
برای تقویت ساختمان بتنی کتابخانه ایالتی اورگ (Oregon state library) را می توان نام برد که در آن برای تقویت از دیوار برشی فولادی برشی فولادی استفاده شده است .
3- معرفی سیستم دیوار برشی فولادی برای تقویت سازه های بتنی ساخته شده [۳]
سال ۱۹۹۵ زلزله در Hugoken-Nanbu4 که زلزله مهیبی بود ، باعث کشته و مجروح شدن انسانهای زیادی شد . ساختمان های بسیاری آسیب جدی دیدند و ساختمان هایی که قبل از سال ۱۹۸۱ و مخصوصأ قبل از ۱۹۷۱ ساخته شده بودند ، خسارت شدیدی را متحمل گردیدند و حتی برخی از آنها فرو ریختند .
این امر نشانگراین است که آیین نامه و مقررات قدیمی برای طراحی ساختمان به نحو مناسبی نیروهای زلزله و شکل پذیری سازه ای را در نظر نگرفته اند .
در سال ۱۹۹۹ زلزله در chi -chi تایوان نیز باعث زیان فراوان و تخریب بسیاری از سازه ها شد . دوباره این ساختمان هایی که قبل از سال ۱۹۸۳ طراحی و ساخته شده بودند ، تخریب شدند و بعد از زمین لرزه ۱۹۹۹ تمام مقررات و آیین نامه های زلزله مورد باز بینی قرار گرفته و همه مقررات قبلی لغو شدند . ضرایب لرزه ای منطقه ای در هرناحیه تایوان تولید و ایجاد گردید . برای مثال شتاب زمین لرزه در منطقه Taichung از ۰.23g به ۰.33g افزایش یافت .
در نتیجه تقریبا همه ساختمانها در Taichung مطابق با مقررات طراحی جدید احتیاج به مقاوم سازی پیدا کردند. هدف این پروژه افزایش و بهبود بخشیدن مقاومت لرزه ای ساختمان های بتن مسلح می باشد . این پروژه شامل سه زیر مجموعه است که شامل :
• پیدا کردن و پی بردن به میزان کمبود مقاومت لرزه ای ساختمان های بتن آرمه موجود بر اساس آیین نامه جدید
• مساله نیروهای وارد بر سازه کناری و همجوار بعلت تغییر مکانهای بیش از اندازه جانبی آنها
• تحقیق در مورد دو روش برای جذب انرژی توسط پانلهای برشی فولادی و بادبند فولادی برای بهبود مقاومت لرزه ای سازه های موجود .
4- مشخصات لرزه ای پانلهای برشی فولادی با نقطه تسلیم پایین (LYP)
استفاده از دیوار برشی فولادی باعث بهبود مقاومت لرزه ای سیستم در طراحی ساختمان های جدید و مقاوم کردن ساختمان های ساخته شده می شود . صفحات فولادی نازک تمایل به کمانش دارند و از این رو ظرفیت جذب انرژی در این رو صفحات محدود است .
اخیرا روشهای جدید و تکنولوژی های بدست آمده در زمینه فلزات ، صفحات فولادی جدید را در دسترس ما گذاشته است . این نوع فولاد دارای تنش تسلیم کمتر افزایش طول بالا می باشند و توانایی تغییر شکل دادن و جذب انرژی بیشتری را قبل از شکستن از خود نشان می دهند . یکی دیگر از ویژگی های آن پایین بودن نقطه تسلیم است که این باعث افزایش ناحیه پلاستیک آن می شود و باعث جذب بیشتر تنش می شود .
پانلهای برشی فولادی ساخته شده از LYP توانایی جذب و اتلاف انرژی زیادی را دارند ، و می توانند در ساختمان های جدید مورد استفاده قرار گیرد . این نوع پانلها همانند دیوار برشی فولادی نسبت به نیروهای زلزله طراحی و ساخته می شوند . چون این پانلها دارای ویژگی جذب و اتلاف انرژی بالایی هستند ، می توان از آنها بعنوان میراگر برای میرا کردن انرژی لرزه ای استفاده کرد . این نوع میراگر فلزی در هنگام جذب انرژی استحکام کافی را دارند و همچنین نسبت به میراگرهای که در حال حاضر مورد استفاده قرار می گیرند ، نیاز به نگهداری و تعمیر ندارد .
نقطه تسلیم و نقطه نهایی صفحات LYP هردو تحت تاثیر میزان کرنش وارده است . در این تحقیق تاثیر میزان کرنش و نحوه بارگذاری بر روی مشخصات مقاومت لرزه ای پانل صفحه ای مورد آزمایش قرار گرفته است .
مجموعه آزمایشات انجام شده ، مطالعه روی رفتار پانلهای برشی ساخته شده از فولاد LYP تحت سرعت های بارگذاری متفاوت و جابجایی های نموی ، است .
4-۱- مطالعات آزمایشگاهی بروی پانل برشی فولاد LYP
پانل فولادی برشی ، ساخته شده از فولاد با نقطه تسلیم پایین ، عامل موثری برای جذب انرژی زیادی است . با طراحی و ساخت مناسب پانلهای برشی فولادی می توان در جذب و تلف کردن مقدار زیادی از انرژی لرزه ای بهره برد . اما رفتار سازه ای این نوع پانل برشی متاثر از شدت کرنشی است .
در ۹ نمونه تست شده در آزمایش ، می خواهیم رفتار آنها را در هر یک از نحوه بارگذاری متفاوت مورد ارزیابی قرار دهیم. شکل ۲ نحوه طراحی نمونه ها را نشان می دهد . شکل ۳ چگونگی آزمایش ها را نشان می دهد . در این نمونه ها نسبت عرض به ضخامت پانل ۵۰ گرفته شده است . لبه های بیرونی اعضأ به خاطر جلوگیری از ترک خوردن اتصالات بین لبه و پانل و صفحه پای ستون تراشیده شده است . این کار بخاطر اجتناب تمرکز تنش و سوق دادن صفحه به ناحیه پلاستیک که قبلا بحث آن را کردیم . در این تحقیق تاریخچه بارگذاری پانل برشی فولادی آزمایش و بررسی شده است . سه سرعت بارگذاری ۲.۵ ، ۵ و ۱۰ mm/sec انتخاب شده است.
برای دستیابی به سرعت کرنشی این نمونه ها بارگذاری تدریجی به جای بار لرزه ای اعمال می شود . برای هر سه حالت متفاوت جابه جایی δy ، ۲δy و ۳δy را در هر دوره بارگذاری آزمایش را می پذیریم . آزمایش روی سازه تا زمانی که مقاومت به زیر % ۸۰ مقاومت نهایی رسید متوقف می شود.
4-۲- بررسی در نتایج آزمایشات :
مطالعات نشان می دهد که چرخش نسبی ۵ آن ها بیشتر از ۵% است که بیشتر از زاویه تغییر مکان جانبی مورد نیاز سازه می باشد که معمولا چرخش نسبی سازه ها را ۲.۵% که بیشتر از آن موجب تخریب در سازه می شود ، در نظر می گیرند . با تغییر شکل اطراف المان و تغییر شکل مورد انتظار و زاویه تغییر شکل جانبی ۵% به نظر می رسد که برای پانل برشی کافی می باشد . بدیهی است که تمام نمونه های آزمایش شده زا ویه تغییر مکان جانبی آنها بیشتر از ۵% خواهد بود که در جدول ۱ نشان داده شده است . در آنها می توان دید که بارگذاری سریع و کند حدودا ۱۶% تفاوت ایجاد کرده است.
تفاوت روی مقاومت نهایی پانل فولادی برشی LYP با با افزایش بارگذاری یکنواخت ، تأثیر نسبت بارگذاری بر روی مجموع ظرفیت استهلاک انرژی قابل صرف نظر کردن است . از شکل ۴ می توان دریافت که پانل فولادی آزمایش شده دارای استحکام و جذب انرژی قابل توجهی است و نسبت به دامنه تغییر مکان در شرایط بارگذاری یا تغییر در دامنه حرکت بی تفاوت است .
مقدار انرژی تلف شده پانلهای برشی در هر شرایط بارگذاری لرزه ای ثابت می ماند . مشخصات نمودار بار – جابه جایی پانل برشی شدیدا تحت تأثیر کمانش برشی صفحات نازک فولادی است . معمولا مقاومت نهایی به تدریج بعد از اینکه کمانش برشی اتفاق افتاد ، کاهش می یابد .
ظرفیت تغییر شکل نهایی پانل برشی متأثر از نسبت عرض به ضخامت پانل است . در این مطالعه نسبت عرض به ضخامت نمونه آزمایش شده را ۵۰ می گیریم وشروع کمانش برشی وقتی اتفاق می افتد که زاویه تغییر شکل جانبی آن به ۴% برسد . تأخیر در کمانش برشی به تنهایی نشان دهنده افزایش ظرفیت شکل پذیری پانل برشی نیست اما کم شدن آسیب المان های غیر
سازه ای وابسته و مربوط به پانل برشی است
مجموع انرژی تلف شده بستگی به بارگذاری و افزایش جابه جایی ندارد . چون که پریود لرزشی طبیعت تصادفی دارد این مطالعات نشان می دهد انرژی به نسبت تاریخچه بارگذاری بی تفاوت است و این یکی از مزایای پانل برشی همانند میراگرهای لرزه ای است . در پانلهای برشی استهلاک انرژی موثر تحت چرخه بار گذاری تصادفی ثابت می ماند . پانل فولادی می تواند برای تقویت ساختمان های موجود موثر باشد . مطالعات آزمایشی برای تقویت قابهای بتنی توسط میراگرهای برشی فولادی در قسمت بعدی توضیح داده می شود .
5- مقاومت لرزه ای سازه ها با استفاده از مقاومت نهایی پایین در قابهای مهار بندی و پانلهای برشی
کمانش قاب مهاربندی شده (بادبند)
تجربیات قبلی نشان می دهد که ساختمان هایی که مطابق مقررات امروزی طراحی وساخته نشده اند ، نمی توانند در مقابل نیروی زلزله مقاومت کرده و متحمل خسارتهایی می شوند . در تایوان این ساختمانها اکثرا سازه های بتن آرمه هستند و نیاز به ترمیم برای بهبود مقاومت لرزه ای دارند . قابهای ممان گیر (BIB) و پانلهای برشی فولادی ثابت شده که دارای مقاومت بالا و شکل پذیری بالا و حلقه های هیستریسس ثابتی وپایداری دارد . قاب مهار شده با بادبند شامل المانهای باربر و المانهای مهاربندی برای بارهای جانبی هستند .
بارهای محوری توسط المانهای حمال (تیر) مهار می شوند و که تکیه گاههای جانبی المان کار جلوگیری از کمانش عضو را به عهده دارند . دیوار برشی فولادی ساخته شده از LYP مانند یک المان باربر برشی زمانی که به خوبی ، طراحی شود ، می تواند رفتار خوبی در برابر نیروهای لرزه ای داشته باشد . در این تحقیق قابهای قابهای ممان گیر ودیوار برشی فولادی برای مقاوم سازی قابهای بتنی مورد استفاده شده اند و کارایی هر یک از آنها مورد آزمایش قرار می گیرد .
روش آزمایش:
قاب بتنی با مقیاس ۰.۸ ساخته شده است . شکل ۶ نشان دهنده جزئیات قاب بتنی را نشان می دهد . یکی از قابهای بتنی بدون تقویت تست می شود که طبق MRF طراحی شده است . دومین نمونه توسط بادبند ، ساخته شده از فولاد LYP100 مهار شده که طبق BIBLYP طراحی شده است . سومین نمونه بادبند از فولاد A36 و طبق BIBA36 طراحی شده است . چهارمین نمونه توسط دیوار برشی فولادی ساخته شده از فولاد LYP100 مهار شده است .
هر عضو تقویت کننده همانند بادبند و دیوار برشی فولادی متصل به قالب فولادی شکل که به بتن بسته است واز چهار تا H200*200*8*12 شکل ساخته شده در شکل ۸ نشان داده شده است . که محور کوچکتر H در قاب بتنی فرو رفته است . گل میخ های برشی به صفحات جان H شکل جوش داده می شوند . بادبند ها و دیوار برشی فولادی به این صورت در طول قاب فولادی به قاب بتنی متصل می شود ، که درون قاب فولادی وبتنی قرار می گیرد .
مشخصات مکانیکی فولاد استفاده شده در لیستی در جدول ۲ آمده است . ومقاومت فشاری بتن در هنگام آزمایش ۲۱.۸ و ۲۰.۷ و ۲۵ و ۲۳.۷ Mpa به ترتیب برای MRF و BIB-LYP و BIB-A36 و SSW-LYP بدست آمده است . بارگذاری چرخه ای بطور رفت وبرگشت از طریق جک که کاملا به تیر محکم گشده وارد می شود ،.
نتیجه آزمایش و تحقیق
جمع شدگی قطری بادبند از نوع LYP و A36 که هر دو تحت فشار و کشش قرار می گیرند در نتیجه ترکهای گسترده ای در ستون ایجاد می شود . دیوار برشی فولادی از نوع LYP تغییر شکل غیر متقارنی از خود نشان داده است . زمانی که بار از طرف راست اعمال می شود در اثر لنگر خمشی قاب فولادی از قاب بتنی جدا می شود .
نتایج آزمایشات نشان می دهد که ممانعت از کمانش بادبند و دیوار برشی فولادی درتقویت قابها موثر است . سختی و مقاومت و شکل پذیری قاب ها بعد از تقویت کردن آنها بصورت جزئیات اتصال بین قاب بتنی و قاب فولادی بادبند عامل موثر موثراست . و ساخت آسانی دارد .
بادبند ها باعث بهبود مقاومت و شکل پذیری می شود . بهرحال جزئیات تقویت کننده های قابها برای دیوار برشی فولادی نیاز به مطالعات زیادی دارد.
نتیجه گیری کلی
1- مقاومت تسلیم و مقاومت نهایی فولاد LYP متاثر ار نسبت کرنشی است . مقاومت نهایی پانلهای برشی ساخته شده از فولاد LYP به سرعت بارگذاری آن بستگی دارد . در این مطالعه اختلاف مقاومت نهایی با سرعت بالا و کم حدودا ۱۶% است. یعنی اگر سرعت بارگذاری به طور سریع باشد % ۱۶ بیشتر از حالتی است که بطور کند بارگذاری شود .
2- ساخت و طراحی صحیح پانلهای برشی ساخته شده از فولاد LYP فولاد به چرخش نسبی % ۵ رسیده است که لازمه اتلاف انرژی بالایی است .
3- تحت بارپانل برشی ابتدا تسلیم موضعی رخ می دهد و با افزایش بار کمانشپانل رخ می دهد ودر نتیجه پانل به بیرون قوس ورداشته وباعث کشش مقطع می شود . بعد از تسلیم شدن کامل پانل نوارهای بیرونی صفحه از همه آخر باعث جذب انرژی می شود . یعنی ابتدا وسط صفحه باعث جذب انرژی شده و کم کم که به نقطه تسلیم می رسند این جذب انرژی به طرف پانل منتقل می شود که در آخر تمام صفحه به نقطه تسلیم می رسند . که باعث اتلاف و جذب انرژی بسیار زیادی می شوند.
مراجع
1- کتاب مقدمه ای بر دیوار برشی فولادی نوشته دکتر سعید صبوری
2- Astaneh-Asl, A. (2000). “Steel plate shear walls,” U. S.-Japan Workshop onSeismic Fracture Issues in Steel Structure, San Francisco.
3- Seismic Assessment and Strengthening Method of Existing RC Buildings in Response to Code Revision Shun-Tyan Chen -Van Jeng- Sheng-Jin Chen-Cheng-Cheng Chen
طراحی دیوار برشی
یکی از مهمترین مزایای برنامه ETABS ، طراحی دیوار برشی می باشد . این برنامه قادر است دیوارها را بر اساس شرایط دو بعدی و سه بعدی طراحی کند .
برنامه ETABS دیوارها را با سه روش طراحی می کند که انتخاب روش توسط کاربر می باشد.
سه روش طراحی برنامه ETABS عبارتند از :
* روش المان مرزی – تحت عنوان Simppified T and C
* روش میلگردگذاری بکنواخت – تحت عنوان Uniform Reinforceing
* روش عمومی و کامل بر اساس میلگردگذاری دلخواه – تحت عنوان General Reinforceing
یکی از مهمترین مزایای برنامه ETABS ، طراحی دیوار برشی می باشد . این برنامه قادر است دیوارها را بر اساس شرایط دو بعدی و سه بعدی طراحی کند .
برنامه ETABS دیوارها را با سه روش طراحی می کند که انتخاب روش توسط کاربر می باشد.
سه روش طراحی برنامه ETABS عبارتند از :
· روش المان مرزی – تحت عنوان Simppified T and C
· روش میلگردگذاری بکنواخت – تحت عنوان Uniform Reinforceing
· روش عمومی و کامل بر اساس میلگردگذاری دلخواه – تحت عنوان General Reinforceing
روش المان مرزی روشی ساده وسریع است و معمولا در محاسبات دستی از آن استفاده می شود .
دو روش بعدی بر اساس منحنی اندرکنش سه بعدی هستند و دقت بسیار بالائی دارند . در روش دوم مقطع دیوار با میلگردهایی که دارای شماره و فاصله یکسان هستند طراحی می شود . اما در روش سوم فاصله و شماره میلگردها دلخواه است .
پارامترهای طراحی این سه روش و در کل روند طراحی آنها متفاوت می باشد .
در اینجا برای اختصار روش دوم را توضیح میدهم ( فرض میکنم در مدل کردن دیوار هیچ اشکالی ندارید و فقط روند طراحی را توضیح می دهم . ) و انشاالله در آپهای آتی ، روند مدل کردن و طراحی دیوار برشی و همینطور نکاتی که در طراحی دیوار برشی باید به آنها توجه داشت را بطور کامل توضیح خواهم داد.
روش میلگردگذاری بکنواخت – تحت عنوان Uniform Reinforceing
در این روش میلگردهایی با فواصل یکسان و با شماره یکسان مسلح می شود . سپس مقطع بدست آمده بر اساس منحنی اندرکنش سه بعدی P-M-M طراحی خواهد شد .
این روش کاملا دقیق می باشد و برای هر نوع مقطعی قابل استفاده است و تنها محدودیت آن فاصله و شماره یکنواخت میلگردها می باشد .
در ادامه به توضیح پارامترهای طراحی و همینطور روند طراحی می پردازم :
برای دسترسی به پارامترهای طراحی دیوار ، یک دیوار را انتخاب کرده و سپس فرمان Design > Shear Wall Design > View/Revise Overwrites را کلیک کنید .
توصیه های تحلیل و طراحی
امروزه تحلیل و طراحی سازهها عمدتاً با استفاده از فناوری رایانهای صورت میگیرد.
اگر چه سرعت و سهولت در تعریف مدلهای تحلیلی و اخذ جواب میتواند فرصت کنترل و بررسی جوابها را محدود نماید، معهذا با توجه نمودن به نکات ذکر شده در این مقاله در جهت کسب اطمینان از درستی و مناسب و بجا بودن اطلاعات ورودی سازنده مدل و روش تحلیلی بکار گرفته شده، میتوان از بروز خطاهایی که بهراحتی پیش میآید اجتناب نمود.
البته خطاهای بنیادی ناشی از قضاوت نامناسب مهندسی و تعبیر نامناسب واقعیتهای فیزیکی سازهای (واقعی) خارج از شمول بحث این مقاله است
1- نرمافزارهای مورد استفاده
برای یک سازهی “معمولی” استفاده از نرمافزارهایی مثل برنامههای ETABS ، STAAD Pro و SAP مناسب و کافی میباشد. بعضی از نرمافزارها مثل ANSYS امکانات بیشتری داشته و در عین حال سنگینتر میباشد.
بهلحاظ کاربری، نرمافزار ETABS برای یک ساختمان مسکونی (یا اداری، تجاری) قابل استفادهتر است. در صورتی که نرمافزاری مثل SAP برای تحلیل سازههای متنوعتری میتواند مفید باشد. به هر حال چون اصول و مبانی مورد استفاده در این نرمافزارها یکسان میباشد، علیرغم ظاهر متفاوت، در صورتی که کاربرد خاصی را پوشش دهند، با هم فرقی نخواهند داشت.
قبل از کاربری یک نرمافزار، باید با ویژگیهای آن آشنا شد. در این مورد هدف اصلی از آشنایی، این نیست که به سرعت مدل ساخت و تحلیل نمود (گرچه چنین تسلطی نیز مفید است) بلکه منظور از آشنایی با یک نرمافزار عبارت است از آشنایی با اصول و مبانی بکار رفته در هر دستوری از نرمافزار.
لازم است روشهای تحلیلی مورد نظر ابتدا در مورد چند مثال ساده امتحان شده و پس از کسب آشنایی با روش، شرایط تکیهگاهی …، نوع بارگذاری، حالات بارگذاری… در مورد سازههای (پیچیده) بکار رود. برای مثالهای حل شده میتوان از مراجع مختلف تحلیل سازهها کمک گرفت.
در ضمن دستور کمک و راهنما (Help) که در آن کلیهی دستورات برنامه شرح داده شده است، بهطور معمول دارای پروندهها و پوشههای زیر است:
مثالهایی (Examples) از نحوهی شروع کار با نرمافزار (برای مبتدیان) امکانات مختلف نرمافزار مثل انواع تحلیلهای استاتیکی، دینامیکی، بارهای فزاینده و… مثالهای تأیید نرمافزار (Verification Examples) که جوابهای مثالهای خاصی از مراجع مختلف برگرفته و با جوابهای مدل نظیر نرمافزار مقایسه شده است. مراجع نظری و یا استانداردهای مورد استناد نرمافزارها (گاهی بعضی از این مراجع نیز پیوست نرمافزار است)
۲- پیش فرضهای نرمافزارها
هر نرمافزاری در موارد متعددی برمبنای پیش فرضهایی کار میکند که این پیش فرضها (یا موارد قرارداری اولیه) بیشتر برمبنای عرف و عادت رایج مهندسان کشور تهیهکنندهی نرمافزار، انتخاب شده است. برای نمونه نرمافزار SAP در مصالح فولادی مبنای فولاد قراردادی و یا پیش فرض را A36 که تا حدودی قویتر از فولاد (S235JR (ST37-2 میباشد منظور نموده است و کاربر باید از این فرض آگاه باشد.
در مثالی دیگر، در طراحی اعضاء یک سازهی اسکلتی، نرمافزار، پارامترهای طراحی را بهصورت ترکیبی از پیش فرضها و دادههای مدل در نظر گرفته و به نسبت تنش میرسد، در طراحی یک عضو، متغیرهای متعددی دخیل میباشد، همچون طول عضو (ضریب طول موثر…) طول آزاد بال فشاری و… طراح باید از تکتک متغیرها آگاه باشد.
مثلاً ممکن است در شرایطی برای تیر داخل یک کف، در جایی که بال فشاری آن مقید است نرمافزار هیچگونه قید جانبی منظور ننماید و یا مثلاً در شبیهسازی یک تیر لانه زنبوری، متغیرهای طراحی مناسب فرض شده است یا خیر؟
3- تغییر شکلها و تعادل نیروها
تعادل نیروهای وارد به سازه در شرایط مختلف، با استفاده از واکنشهای تکیهگاهی، همیشه باید مورد بررسی و ارزیابی قرار گیرد. چنین تعادلی به سادگی میتواند بهم بخورد (در واقع در روش تحلیل، تعادل همواره برقرار است ولی شرایطی غیر از شرایط مورد نظر میتواند ایجاد شود) و این حالت میتواند اثرات سویی داشته باشد.
در بررسی تعادل نیروها باید دقت داشت که بسیاری از نرمافزارها، واکنشهای مربوط به انواع متفاوت تکیهگاهها (مثلاً بدون نشست و تکیهگاههای فنری) را در یک صفحه (پنجرهی) واحد نشان نمیدهد و باید به این نکته توجه نموده و جداگانه مقدار هر یک و یا جمع آنها را دید.
در عین حال به تغییر شکلهای سازه نیز باید توجه کافی داشت. از طرف دیگر حدود تغییر شکل و حدود نیرو، هر دو، مهم است.
4- کفهای صلب و نیمه صلب
با امکانات نرمافزاری و سختافزاری امروز به تعریف کفهای صلب طبق تعریف آییننامهی ۲۸۰۰ و یا بررسی نیمه صلب بودن آن نیازی نیست. بهراحتی میتوان کفها را با بریدگیها و شکلهای هندسی خاص خود در نظر گرفت.
در این شبیهسازی به ابعاد و جهت تیرریزیها و ضخامت دال (بتنی) روی تیرها باید توجه نمود. در یک مدل سه بعدی تغییر جهت تیرریزی، روی پخش بار (استاتیکی) و روی پخش جرم، که در تحلیل دینامیکی مورد استفاده قرار میگیرد تأثیر خواهد داشت. به این ترتیب در مدل سه بعدی خروج از محوریها را، بهصورت واقعیتری، میتوان منظور نمود.
|۵- اجزای سازهای مدل
چه اجزایی از سازه را باید در مدل منظور نمود؟ امکانات نرمافزاری و سختافزاری، امروزه، بسیاری از محدودیتها را از بین برده است.
بنابراین شاید این تصور پیش آید که هر چه اجزای سازهای بیشتر و یا حالتهای بارگذاری بیشتر و… یا رفتارهای سازهای پیچیدهتری منظور شود بهتر خواهد بود.
پیچیدگی مدل نباید چنان شود که اجزای فرعی بر اجزای اصلی سایه افکنده، مدل از کننترل خارج شده و امکان نتیجهگیرری روشن تحلیل، خدشهدار شود. ممکن است در یک مدلسازی تحقیقاتی و یا بررسیهای خاص، مدلهای پیچیدهای در نظر گرفته شود ولی معمول پروژههای عادی نیست. چنانچه لازم باشد میتوان از ردههای متفاوتی از مدلها استفاده نمود.
6- بررسی مدل
مدل باید تحت کنترل تحلیلگر باشد و بهعبارت دیگر جنبههای مختلف مدل (که بهتر است بهصورت نوشته/ سیاهه/ چک لیست “Check list” باشد) همچون هندسه، میزان بارها، حالات بارگذاری، تکیهگاهها (انواع و محل آنها)، و… کنترل شود.
به همین صورت جوابهای مدل (خروجیها) بهصورت کامل باید بازبینی شود. بعضی از اشکالات را به سادگی میتوان از تصاویر اولیهی سازه و یا از تصاویر بعد از تحلیل (تغییر شکل یافته) دید. مثلاً اینکه، آیا تکیهگاهها سرجای خود قرار دارند و یا اعضا به هم متصل شده است یا خیر.
ولی علاوه بر این اشکالات ظاهری، اشکالاتی نیز در تحلیل میتواند بروز نماید که از نوع “نهفته” است و با نگاهی سطحی نمیتوان به وجود آنها پیبرد. باید توجه شود که در بسیاری از موارد، این نوع اشکالات تأثیرگذاری جدی در جوابها دارد.
7- بررسی حساسیتها
اگر چنانچه برخی از فرضیههای محاسبه، شفاف نباشد و به دلایل مختلفی مقادیر آنها امکان تغییر یابد، باید به جای اینکه تحلیل فقط برای میزان مشخص و معینی از متغیرها انجام یابد، برای محدود محتملی از آنها صورت پذیرد. برای مثال، اگر سازهای نسبت به نشست یک یا چند تکیهگاه حساس باشد، در آن مورد لازم است تحلیل حساسیت صورت گیرد تا از پیامدهای ناشی از میزان متفاوت نشست آگاه شد.
یا مثالی دیگر، فرض تکیهگاه گیردار کامل و یا مفصلی کامل (که اغلب موارد بهصورت ایدهآل وجود خارجی ندارند) باعث ازدیاد نیروهای داخلی اعضا (و کمانش و یا کشش زیادی آنها) بهویژه در بارهایی مثل بارهای حرارتی و یا در مقابل حالتهای بارگذاری زلزله خواهد شد، درصورتی که اگر، رهاسازی حتی جزیی تکیهگاهی نیز منظور شود، میزان تغییر شکلها، نیروها و واکنشهای تکیهگاهی تغییرات منطقیتر خواهد داشت.
8- تحلیل با آخرین تغییرات
گاهی بر مبنای جوابهای بهدست آمده از تحلیلهای (ابتدایی)، تحلیلگر تغییراتی در سازه اعمال مینماید.
برای مثال مقاطع اعضا سبک و یا سنگین میشود و…. اعمال چنین تغییراتی باعث تغییر شکل و یا در حا لت کلی تغییر نیروی اجزا میشود. بنابراین لازم است پس از انجام تغییرات (جدی)، تحلیل دوبارهای از مدل صورت گیرد.
9- مستندسازی تحلیل
کارکرد منظم و مستندسازی باید از اهم ویژگیهای لازم یک تحلیل و یک تحلیلگر باشد. با انجام مستندسازی یک تحلیل و بهویژه انجام آن طبق یک روال و دستورالعمل جامع مشخص و معین از پیش تعیین شده (Check list)، به جرأت میتوان گفت که، در یک سازه متعارف، امکان بروز اشکال در تحلیل محو خواهد شد.
این مستندات باید شامل اطلاعاتی از قبیل اسم تحلیلگر (و یا تحلیلگران)، مشخصات (شماره و تاریخ انتشار) نرمافزار … و تاریخ انجام آخرین تغییرات در مدل… باشد. لازم است، پس از تأیید مدل، نسبت به “قفل نمودن” و یا “منجمدسازی” مدل اقدام شود و برای مثال در وسایل “فقط خواندنی- غیرقابل بازنویسی” حفظ شود.
10- بازتاب تحلیل در نقشهها
هدف نهایی بسیاری از تحلیلها عبارت از اجرای سازهی مدل است، و این کار از طریق نقشهها به مهندس مجری میرسد. لازم است نقشههای (سازهای) با فرضیههای مدل و جوابهای مدل مقایسه گردیده و اطمینان حاصل شود که، ویژگیهای اساسی مدل در آن بازتاب یافته و دچار خدشه نشده باشد.
گرچه در نقشهها به تحلیل (شماره و تاریخ مستندات تحلیل) فعلاً اشاره نمیشود ولی، انجام این امر بسیار مفید خواهد بود و حداقل لازم است این کار روی نسخهی (شخصی) سختافزاری و یا نرمافزاری مهندس طراح، منعکس گردد.
11- ارائهی مدل و جوابهای تحلیل
جوابهای کامل یک تحلیل (سازهای) رایانهای، برای یک سازه نه چندان پیچیده به راحتی به چند صد صفحه خواهد رسید. ارائهی چاپی کامل چنین جوابهایی چندان مفید نبوده و باعث اتلاف وقت (و اتلاف کاغذ و مضر به محیطزیست!) خواهد شد. در صورت نیاز به ارائهی کل جوابها نیز، میتوان آنها را بهصورت نرمافزاری ارائه داد.
در حالت کلی ارائهی مدل و جوابهای تحلیل باید طبق یک استاندارد و الگوی مشخص و معین باشد. در این مورد روشهای زیر پیشنهاد میشود: ارائه مدل تحلیلی نرمافزاری؛ از محاسن این روش این است که همهی کلیات و جزییات مدل قابل دسترسی خواهد بود و از اشکالات آنکه، در صورت در دسترس نبودن آن نرمافزار و یا انتشار خاصی که تحلیل با آن انجام گرفته است، باز کردن مدل ممکن نخواهد بود، در ضمن آشنایی به نرمافزار نیز لازم ا ست. ارائه فرضیهها و جوابهای کلیدی؛ از محاسن این روش وقتبر نبودن آن، لازم بودن آشنایی فرد (بینندهی جوابها) با اصول مهندسی سازه و اصول تحلیل است. از شرایط کافی بودن این روش، تعریف دقیق و مناسب “جوابها و فرضیههای کلیدی” میباشد. جوابها بهتر است بهصورت ترکیبی، توضیحاتی از نمودارها، تصاویر دوبعدی و یا سه بعدی، جداول و لیستها، آمار … حداکثرها (و یا حداقلها) و حتی المقدور بهصورت نرمافزاری باشد. در مورد نمودارها و تصاویر باید دقت شود که برای مفید بودن آنها، لازم است معیار مقایسهای بهطور روشن همراه آنها ارائه شود. برای تحلیلهایی مثل تاریخچهی زمانی، تصویر “گام به گام” (و یا فیلم) تهیه شود و چنین امکاناتی در نرمافزارها میسر است.
12- بازبینی
برای اطمینان از صحت مدل لازم است، در شرایط متفاوت (و بهتر است در زمانی دیگر) توسط تحلیلگر مورد بازبینی قرار گیرد. البته اگر بازبینی توسط شخص دیگری انجام گیرد میتواند بسیار مفیدتر و مؤثرتر باشد. در واقع انجام چنین امری در طرحهای پیچیده و خاص یک ضرورت است.
حتی در مواردی لازم خواهد بود که تحلیلی مجدد و مستقل انجام پذیرد. از بازبینی و یا بازبینیها فقط آنهایی مؤثر تلقی گردد که مستند شده باشد (بهصورت نرمافزاری و یا سختافزاری) و گرنه، بازبینی مستند نشده، همانند انجام نیافتن آن است.
· منبع : تارنمای مهندسی ایران
- بررسی رفتار غیرخطی دیوار برشی بتنی دارای بازشو به روش طراحی بر اساس سطح عملکرد
خلاصه
یکی از انواع سیستمهای مقاوم در برابر زلزله سیستم دیوار برشی بتنی است که به دلیل عملکرد مناسب آن در زلزله های گذشته مورد توجه مهندسین قرار گرفته است.
اما برخی محدودیتهای معماری مهندس محاسب را مجبور به تعبیه بازشو در دیوارهای برشی می نماید. به ویژه در سازه های بلند دارای هسته مرکزی بتنی، پیرامون اتاق آسانسور محل مناسبی برای نصب دیوار برشی و متصل نمودن آنها در جهت عمود بر یکدیگر و ایجاد نمودن دیوار برشی بالدار می باشد اما به منظور تعبیه درب آسانسور ناچار به ایجاد بازشو در یکی از دیوارها می باشیم که این امر بر رفتار دیوار برشی تاثیرگذار خواهد بود. نسبت ابعاد بازشو و همچنین درصد آرماتور بکار رفته در دیوار از مهمترین عوامل تاثیرگذار بر رفتار غیرخطی دیوار برشی بتنی دارای بازشو می باشند که روشهای نوین طراحی براساس سطح عملکرد، امکان بررسی رفتارغیرخطی و شکل پذیری چنین سازه ای را بخوبی فراهم آورده است.
در تحقیقات گذشته از تیرهای کوپله برای مدلسازی کامپیوتری بازشوها در دیوارهای برشی استفاده شده است، این تقریب به ویژه برای بازشوهای با ارتفاع کم خطای نسبتا زیادی در پاسخهای سازه ایجاد می نماید. لذا برای رفع این نقیصه در تحقیق حاضر دیوار برشی بتنی بصورت یک صفحه دارای سوراخ مدل گردیده و تاثیر نسبت عرض بازشو به عرض دیوار و نسبت ارتفاع بازشو به ارتفاع دیوار بر رفتار غیرخطی سازه، به ازاء درصد آرماتورهای مختلف، به روش طراحی بر اساس سطح عملکرد مورد بررسی قرار گرفته است.
مقدمه
احداث دیوار های برشی چه در ساختمانهای بلند و چه متوسط وحتی در ساختمانهای کوتاه موجب می شود که مقاومت ساختمان بطور قابل توجهی افزایش یابد و در مقایسه با ساختن قابهای خمشی اقتصادی تر خواهد بود و بهترین شیوه برای کنترل خیز جانبی ساختمانها می باشد. امروزه بخوبی می توان از دیوارهای برشی در کنار قابهای خمشی به نحوی استفاده کرد که رفتار مجموعه سازه نرم، مقاوم و شکل پذیر باشد. در غالب موارد دیوارهای برشی قادرند بیشترین سهم نیروی برش پایه را تحمل کنند که موجب افزایش چشمگیر سختی ساختمان و کاهش قابل ملاحظه خسارت به عناصر غیرسازه ای می گردند و همچنین دیوارهای برشی قادرند حتی پس از پذیرش ترکهای زیاد، بارهای ثقلی ساختمان را تحمل کنند که ستونها فاقد چنین خاصیتی هستند و در کل چنین عواملی دیوارهای برشی را قابل اطمینان تر از قابهای خمشی ساخته است.
تحقیقات نشان داده است که درصورت اجرای صحیح و آرماتورگذاری کافی، شکل پذیری مناسبی از خود نشان می دهند. در دیوارهای برشی دارای بازشو اگر دیوار در پایین ترین قسمت خود دارای یک یا چند بازشو باشد هریک از اجزاء دیوار در طرفین بازشو را پایه های دیواری و بخشی از دیوار که بین بازشوی بالایی و پایینی واقع می شود را تیر همبند یا کوپله می نامند.
Zhaoو همکاران به بررسی تاثیر ارتفاع تیر کوپله و درصد آرماتور برشی آن در آزمایشگاه پرداختند و به این نتیجه رسیدند که تیرهای کوپله با نسبت دهانه به ضخامت کمتر از ۲ شبیه تیرهای عمیق رفتار می کنند و در برش دچار شکست می شوند. همچنین به این نتیجه رسیدند که تیرهایکوپله با درصد آرماتور برشی کمتر دچار گسیختگی برشی-کششی می شوند اما نمونه های با آرماتور برشی بیشتر، اغلب دچار گسیختگی لغرشی- برشی می شوند و دارای شکستی ترد هستند.
Paulay به بررسی شکل پذیری دیوارهای کوپله پرداخت و به این نتیجه رسید که دیوارهای کوپله محاسن ویژه ای دارند که عبارتند از:
– کنترل تغییر مکان بسیار عالی دارند.
– یک سیستم کوپله قوی، امکان استفاده از دیوارهای لاغر بدون به خطر انداختن حدود مجاز تغییر شکل نسبی طبفقات را فراهم می نماید.
– حدود تغییر شکلها در خلال یک پاسخ شکل پذیر، متاثر از مدهای دینامیکی بالاتر نمی باشد.
– با یک آرماتورگذاری مناسب و کافی، میرایی هیسترتیک بزرگتری نسبت به ساختمانهای سنتی با دیوار برشی از خود نشان می دهد.
صفاری و قهرمانی به این نتیجه رسیدند که افزایش ارتفاع تیر کوپله باعث افزایش مقاومت نهایی می گردد اما درصورتیکه ارتفاع تیر کوپله بیش از حدود ۳۳ % ارتفاع طبقه گردد، تاثیر زیادی در مقاومت نهایی دیوار ندارد و شکل پذیری را نیز کاهش می دهد.
هدف از انجام این تحقیق بررسی تاثیر بازشوها و همچنین تاثیر میزان آرماتورگذاری، بر رفتار غیرخطی و سطح عملکرد دیوارهای برشی می باشد. یک ساختمان ۸ طبقه با سیستم دیوار برشی دارای بازشو مورد تحلیل غیر خطی قرار گرفته و رفتار غیر ارتجاعی و سطح عملکرد آن بررسی شده است. پس از آن سازه های ۴ و ۸ و ۱۲ طبقه با شرایط بارگذاری مشابه ساختمان اجرا شده و با حداقل و حداکثر آرماتور ذکر شده در آیین نامه، به منظور بررسی تاثیر میزان آرماتورگذاری بر رفتار غیرخطی و سطح عملکرد سازه ها و کنترل ارضای نیازهای آیین نامه، مورد بررسی قرار گرفته است.
در ادامه نحوه تعیین نقطه عملکرد سازه به روش ضرایب تغییر مکان بیان شده است و سپس رفتار غیر الاستیک دیوارهای برشی مورد بررسی قرار گرفته است. در نهایت کلیات طرح و مشخصات مدل های مورد استفاده در این مقاله و نتایج نهایی مربوط به هر مدل در انتها ارایه گردیده است.
تعیین نقطه ی عملکرد سازه به روش ضرایب تغییرمکان:
تحلیل استاتیکی فزاینده غیرخطی روش موثری برای ارزیابی عملکرد سازه ها در هنگام زلزله می باشد. در این روش، سازه طرح شده تحت الگوی بارگذاری جانبی مشخصی قرار می گیرد و بارهای جانبی تا رسیدن سازه به تغییر شکل نهایی به طور تدریجی افزایش می یابد. با استفاده از این روش منحنی برش پایه در برابر تغییر مکان جانبی بام سازه رسم می گردد که به آن منحنی ظرفیت سازه می گویند، در نهایت با توجه به نتایج به دست آمده از منحنی ها، ارزیابی هایی به منظور کنترل رفتار سازه در نقطه عملکرد (Performance Point) تعیین شده برای آن سازه انجام می پذیرد.
به منظور تعیین نقطه عملکرد سازه در این تحقیق از روش ضرایب تغییر مکان ذکر شده در دستورالعمل بهسازی لرزه ای ایران و دستورالعمل ATC-40 استفاده شده است. به این صورت که تغییر مکان نقطه ای روی بام به عنوان تغییر مکان هدف سازه درنظر گرفته می شود و مقدار این تغییر مکان توسط رابطه ی زیر محاسبه می گردد:
δ_t=C_0 C_1 C_2 C_3 S_a (T_e^2)/〖۴π〗^۲ g
که در آن:
C0 ضریب اصلاحی برای تبدیل واکنش یک درجه آزاد به سیستم چند درجه آزاد.
C1 ضریب اصلاحی برای مرتبط ساختن حداکثر تغییر مکان غیر ارتجاعی سیستم، با تغییرمکان به دست آمده از طیف ارتجاعی خطی.
C2 ضریب اصلاحی جهت لحاظ نمودن تاثیر رفتار هیسترزیس در تغییر مکان طیفی حداکثر سازه .
C3 ضریب اصلاحی برای منظور کردن تاثیرات مرتبه دوم (P – Δ ) می باشند.
پس از به دست آوردن تغییر مکان هدف، کلیه اعضا سازه باید با معیارهای ذکر شده در دستورالعملهای مقاوم سازی نظیر دستورالعمل ATC- 40و یا FEMA و یا دستورالعمل بهسازی لرزه ای ایران کنترل شوند که تا رسیدن به تغییرمکان هدف، ظرفیت اعضا از حدود بیان شده برای سطوح عملکرد مورد نظر فراتر نرفته باشند.
رفتار غیرالاستیک دیوار برشی:
تحقیقات انجام شده بر روی دیوارهای برشی بتن مسلح نشان می دهد دیوارهایی که به حد کافی و به نحو مناسب آرماتورگذاری شده اند نسبت به دیوارهای با آرماتورگذاری کمتر، ترکها را در محدوده وسیعتری از سطح خود پخش کرده اند و اغلب این ترکها بسته هستند به ویژه هنگامی که فولادها به حد جاری شدن نرسیده باشند. همچنین مشخص شده که آرماتورگذاری پیرامون بازشوها، تاثیر مهمی بر ظرفیت دیوار برشی دارد.
دیوارهای برشی دارای بازشو نیز چنانچه به نحو مناسبی طراحی و آرماتورگذاری شده باشند، رفتار شکل پذیر مناسب و خاصیت استهلاک انرژی بالایی دارند که به همین دلیل توصیه می شود تا حد امکان از آنها در ساختمانها استفاده شود. این دیوارها در واقع مرکب از دو یا چند دیوار هستند که توسط تیرهای کوپله به یکدیگر متصل شده اند لذا باید نحوه تخریب هر دو قسمت بررسی شود. اغلب شکستهایی که در این دو قسمت، در سازه ها مشاهده شده است عبارتند از:
شکست ناشی از شکست خود دیوارهای برشی:
در تخریبهای انجام شده در دیوارهای برشی طی زمینلرزه های گذشته مشخص شده که غالبا چهار نوع ضعف موجب چنین تخریب هایی می شوند که باید در طراحی، آنها را شناسایی و تدابیر لازم جهت جلوگیری از آن اتخاذ نمود این تخریبها عبارتند از:
الف- تخریب خمشی
ب- تخریب برشی
ج- تخریب لغزندگی
د- تخریب چرخشی پایه شالوده
در تخریب خمشی، مفصل یا لولای خمیری در پای دیوار تشکیل می شود که محل حداکثر نیروی برشی نیز می باشد. منطقه اصلی مفصل خمیری در ارتفاعی است که به آن طول لولای خمیری می گویند. برای کنترل برش طول این ناحیه را معمولا بین یک تا یک و نیم برابر طول دیوار درنظر می گیرند. در تخریب ناشی از برش، ترکهای ناشی از خمش در منطقه مفصل پلاستیک در ضخامت و طول بزرگتر شده و سپس با ترکهای ناشی از کشش قطری ترکیب می شوند که نهایتا پس از چند تناوب، بتن دیگر قادر به تحمل برش نمی باشد و تمامی برش باید توسط آرماتورها تحمل شود. در تخزیب لغزندگی، دیوار در جهت افقی دچار حرکت می شود که در محل درزهای اجرایی نیز اتفاق می افتد. تخریب ناشی از چرخش شالوده موجب بلند شدن فونداسیون می شود که از قدرت استهلاک انرژی به شدت می کاهد و موجب بوجود آمدن تخریبهای دیگر در سازه نیز می شود.
۲-شکست ناشی از شکست تیرهای کوپله:
در واقع مهمترین ضعف در دیوارهای برشی دارای بازشو، تیرهای کوپله هستند. این تیرها دارای طولی کوتاه و عمقی زیاد هستند و اگر ضخامت آنها کم باشد، تبدیل به تیر عمیق می شوند که رفتار مطلوبی ندارند. تیرهای کوپله معمولا از دیوارها ضعیفترند و بر اثر حرکت جانبی-خمشی دیوارها، چرخش قابل ملاحظه ای در محل اتصال دیوارها به تیرها اعمال می گردد و همین چرخش موجب تولید لنگر قابل توجه و نهایتا جاری شدن مقاطع تیرها می شود. اغلب سه نوع تخریب در تیرهای کوپله مشاهده می شود که به ترتیب عبارتند از:
الف- تخریب خمشی
ب- شکست کششی قطری
ج- شکست قطری فشاری و کششی
طراحی دیوارها باید به نحوی باشد که از تشکیل لولای خمیری (جاری شدن آرماتورها) مطمئن باشیم به نحویکه شکست قطری کششی که شکستی ترد است، نه در دیوار و نه در تیرهای کوپله رخ ندهد، و بطور کلی دیوارها به نحوی رفتار کنند که لولای خمیری ابتدا در تیرهای کوپله و سرانجام در دیوارها تشکیل شود.
کلیات طرح و مشخصات مدل های مورد استفاده:
در تحقیق حاضر از مشخصات مربوط به یک ساختمان ۸ طبقه اجرا شده در شهرستان سبزوار استفاده شده است. سیستم مقاوم در برابر زلزله، دیوارهای برشی بتن آرمه بوده که در پیرامون آسانسورهای ساختمان قرار گرفته اند. به منظور تعبیه درب آسانسورها بازشوهایی منظم در دیوارهای برشی درنظر گرفته شده است. زمین محل احداث, از خاک نوعIII می باشد. ضخامت دیوار 30cm و نسبت آرماتورهای افقی و قائم ρ = 0.۰۰۸۸ می باشد. طول دیوار برشی ۳.0m و طول بازشوها 1m ارتفاع بازشو ۲.0m و ارتفاع طبقه برابر ۳.0m می باشد.
مشخصات مصالح بتن: وزن مخصوص بتن 2500kg/cm3 و مقاومت ۲۸ روزه بتن fc = 250 Kg/Cm و ضریب پواسون ν = 0.۱۵ پارامترهای مدلسازی خطی و غیرخطی توسط روابط آیین نامه آبا و دستورالعمل بهسازی لرزه ای ایران درنظر گرفته شده است.
مشخصات مصالح فولاد: مقاومت جاری شدن فولاد fy= 4000 Kg/Cmو مدل الاستیسیته ی فولادE=2100000 Kg/Cm2 در نظر گرفته شده است.
برای مدلسازی دیوار از نرم افزار”CSI perform-3D” استفاده شده است و در مدلسازی سختی و مقاومت مصالح، منحنی سه خطی با کاهش مقاومت نهایی بکار گرفته شده است. همچنین این نرم افزار قابلیت آن را دارد که تاثیر ترک خوردگی بتن در خمش و برش و خردشدگی آن در فشار و همچنین جاری شدن آرماتورها را نیز لحاظ می نماید.
پس از بررسی سازه اجرا شده، جهت مطالعه تاثیر میزان آرماتورگذاری بر رفتار غیرخطی و سطح عملکرد دیوارهای دارای بازشو, و کنترل تطبیق نیازهای لرزه ای آیین نامه ایران با مقادیر آرماتور ذکر شده در آن، سازه هایی با دیوارهای ۴ و ۸ و ۱۲ طبقه با بارگذاری و شرایط مشابه سازه اجرا شده،با درصد آرماتور حداقل و حداکثر ذکر شده در آیین نامه طرح و اجرای ساختمانهای بتن آرمه ایران “آبا” مدلسازی و تحلیل گردیده است. درصدهای نسبی آرماتورهای در نظر گرفته شده در دیوارهای برشی عبارتند از :
حداقل نسبت آرماتور قائم در دیوار برشی: ρν,min= 0.0012
حداقل نسبت آرماتورافقی در دیوار برشی: ρh,min=0.002
حداکثرنسبت آرماتور در دیوار برشی: ρmax= 0.2
برای توزیع بار جانبی در ارتفاع سازه، از الگوی بارگذاری مثلثی ذکر شده در دستورالعمل بهسازی لرزه ای ایران استفاده شده است و به کمک تحلیل منحنی ظرفیت سازه به دست آمده است. سپس به کمک روش ضرایب تغییرمکان، تغییرمکان هدف آن ها استاتیکی فزاینده غیرخطی (push over) محاسبه و مقادیر دوران در تیر های کوپله و پای دیوار با مقادیر ذکر شده در دستورالعمل بهسازی لرزه ای ایران کنترل گشته است. همچنین جهت بررسی عملکرد کل سازه، تغییر شکل نسبی کلی طبقات با مقدار ارایه گردیده در دستورالعمل ATC-40 کنترل شده است.
نمونه اول: ساختمان ۸ طبقه اجرا شده:
در این بخش به مطالعه یک نمونه از ساختمان ۸ طبقه اجرا شده می پردازیم . در این ساختمان از قاب فولادی ساده جهت انتقال بار قائم استفاده شده است. سیستم مقاوم در برابر زلزله، دیوارهای برشی پیرامون آسانسور هستند که ابعاد بازشو و مشخصات مصالح آن در بالا ذکر شده است. نتایج به دست آمده نشان می دهد که در برش پایه ۲۰.۲ ton و تغییرمکان ۹.4cm نخستین آرماتور کششی جاری شده و در محل بیرونی ترین تار فشاری نیز، مصالح بتنی دچار اندکی خرد شدگی شده است. در برش پایه ۲۵.4ton و تغییرمکان ۱۸.6cm نخستین آرماتور فشاری، در پایه فشاری جاری شده است. این نقطه به بعد جاری شدن آرماتورهای کششی و خرد شدگی بتن فشاری بطور ناگهانی افزایش می یابد و در برش پایه ی۲۶.4ton شکست برشی در پایه دیوار رخ می دهد و دیوار منهدم شده است(شکل ۳ را ببینید) تیرهای کوپله صدمه ای ندیده اند و تنش کششی زیاد در تراز پی و تراز سقف طبقه اول، عامل اصلی تخریب دیوار و نقطه ضعف سازه می باشد. تغییرمکان هدف δt =10.3 cmمحاسبه شده است که در این تغییرمکان، عملکرد کلی سازه و همچنین دوران کلیه تیرهای کوپله در سطح ایمنی جانی Ls قرار دارند.
در ادامه ی مقاله، تحقیقات انجام شده بر روی دیواهای برشی با حداقل و حداکثر آرماتور ذکر شده در آیین نامه مورد بررسی قرارمی گیرد که ضخامت دیوارها، ابعاد بازشوها، بارگذاری و مشخصات کلیه مصالح مشابه ساختمان ۸ طبقه اجرا شده که در بالا ذکر گردید می باشد.
نمونه دوم: ساختمان ۴ طبقه با نسبت آرماتور حداقل:
در این بخش یک ساختمان ۴ طبقه با تمام ویژگیهای ساختمان ۸ طبقه ذکر شده در بخش قبل در نظر گرفته شده و مورد مطالعه قرار گرفته است. نتایج حاصل نشان می دهد در برش پایه ۱۳.۸ ton و تغییر مکان ۰.۵۵ cm آرماتور طولی در کشش به حد جاری شدن رسیده است در برش پایه ی 15ton و تغییرمکان ۴.44cm ترک خوردگی بتن در پایه دیوار و جاری شدن آرماتورهای کششی به طور ناگهانی افزایش یافته و تا انهدام دیوار پیش می رود (شکل ۴ را ببینید) تیرهای کوپله صدمه ای ندیده اند و تنش کششی زیاد در تراز پی موجب تخریب دیوار گشته است. تغییرمکان هدف δt= 4.0cmمحاسبه شده است که در این تغییرمکان، عملکرد کلی سازه و همچنین دوران تیرهای کوپله بحرانی) تیر طبقه اول)در سطح ایمنی جانی LSقرار دارند.
نمونه سوم: ساختمان ۴ طبقه با نسبت آرماتور حداکثر:
این ساختمان همانند ساختمان نمونه دوم بوده و تنها از نسبت آرماتور حداکثر استفاده شده است. نتایج نشان می دهد که در برش پایه ی ۴۲.۳ ton و تغییرمکان ۳.57cm اولین آرماتور کششی جاری شده شده است. در برش پایه 50ton و تغییرمکان ۶.4cm تیرهای کوپله در طبقات اول و دوم دچار شکست برشی می شوند و منحنی ظرفیت با یک افت، تا برش پایه ی ۲۰ ton و تغییرمکان ۹.9cm که در آن تمام تیرهای کوپله دچار شکست شده اند پایین می آید و پس از آن سازه تا انهدام نهایی دیوار که به دلیل کشش زیاد در پایه دیوار رخ می دهد، مقاومت می کند(شکل ۵) مقدار تغییر مکان هدف δt =4.1 cmمی باشد که عملکرد کل سازه و دوران تیرهای کوپله در سطح ایمنی جانی LS محاسبه شد ه است.
نمونه چهارم: ساختمان ۸ طبقه با نسبت آرماتور حداقل:
در این بخش همان ساختمان ۸ طبقه اجرا شده با نسبت آرماتورهای حد اقل مد نظر می باشد. نتایج طیف ظرفیت نشان می دهد که در برش پایه ۱۲.۵ ton و تغییرمکان ۲.۰ cm آرماتور طولی در کشش به حد جاری شدن رسیده است و در برش پایه ۱۰.۵ ton و تغییر مکان ۶.۸ cm ترک خوردگی بتن پایه و جاری شدن آرماتورهای کششی به طور ناگهانی افزایش یافته و تا انهدام دیوار پیش می رود (شکل ۶ را ببینید) تیرهای کوپله صدمه ای ندیده اند و تنش کششی زیاد در تراز پی و تراز سقف طبقه اول موجب شکست و تخریب دیوار گشته است. تغییرمکان هدف δt = 10.0 cm محاسبه شده است که در این تغییرمکان، عملکرد کلی سازه و همچنین دوران تیرهای کوپله بحرانی در سطح ایمنی جانی LS قرار دارند.
نمونه پنجم: ساختمان ۸ طبقه با نسبت آرماتور حداکثر:
این ساختمان همانند ساختمان نمونه ی سوم بوده و تنها از نسبت آرماتور حداکثر استفاده شده است. نتایج بررسی طیف ظرفیت (شکل ۷ را ببینید) نشان می دهد که در برش پایه ی ۳۰.2ton و تغییرمکان ۱۲.۳ cm اولین آرماتور کششی جاری شده شده است و اندکی خردشدگی بتن در بیرونی ترین تار فشاری رخ داده است. در برش پایه ی 38ton تغییرمکان ۲۱.5cm تیرهای کوپله در طبقات اول، دوم، سوم و چهارم دچار شکست برشی شدند. در این نقطه یک افت در منحنی ظرفیت سازه ایجاد شده که به دلیل شکست تیرها بوده است و پس از آن منحنی به سمت بالا باز می گردد در برش پایه ی ۳۲.7ton تغییرمکان ۵۴.5cm ، تمامی تیرها دچار شکست می شود و یک افت شدید در منحنی ایجاد می شود، پس از آن شاهد افزایش مقاوم هستیم که ناشی از مقاومت دیوارها است و سازه تا تخریب نهایی دیوار که به دلیل جاری شدن آرماتور کششی در پایه کششی دیوار و خرد شدگی بتن مقاومت می کند. مقدار تغییرمکان هدف δt = 4.1 cm محاسبه شده است که عملکرد کل سازه و دوران تیرهای کوپله و پایه ها در سطح ایمنی جانی LS می باشد.
ششم: ساختمان ۱۲ طبقه با نسبت آرماتور حداقل:
در این بخش یک ساختمان ۱۲ طبقه با تمام ویژگیهای ساختمان ۸ طبقه ذکر شده در بخش های قبل در نظر گرفته شده و مورد بررسی قرار گرفته است. نتایج طیف ظرفیت این ساختمان نشان می دهد در برش پایه ۹.5ton و تغییر مکان ۵.4cm آرماتور طولی در کشش به حد جاری شدن رسیده است و در برش پایه ۱۰.9ton و تغییر مکان 11cm آرماتور طولی در تیرکوپله طبقه اول جاری شده است. در برش پایه ی ۱۱.7ton و تغییر مکان ۲۳.1cm آرماتورهای فشاری پایه جاری شده اند و خرد شدگی بتن نیز اتفاق افتاده است، از این نقطه به بعد افزایش مقاومتی در دیوار مشاهده نمی شود و خردشدگی بتن فشاری و جاری شدن آرماتورهای کششی افزایش یافته و تا انهدام دیوار پیش می رود(شکل ۸ را ببینید) تیرهای کوپله محاسبه صدمه ای ندیده اند و تنش کششی زیاد در تراز پی و تراز سقف طبقه اول موجب تخریب دیوار گشته است. تغییرمکان هدف δt = 13.9 cm محاسبه شده است که در این تغییرمکان، عملکرد کلی سازه و همچنین دوران تیرهای کوپله بحرانی در سطح ایمنی جانی LS قرار دارند
نمونه هفتم: ساختمان ۱۲ طبقه با نسبت آرماتور حداکثر:
این ساختمان همانند ساختمان نمونه پنجم بوده و تنها از نسبت آرماتور حداکثر استفاده شده است. نتایج بررسی طیف ظرفیت(شکل ۹ را ببینید) نشان می دهد که در برش پایه ی ۲۴.5ton و تغییرمکان ۲۸.۱۵ cm اولین آرماتور کششی جاری شده و اندکی خرد شدگی در بیرونی ترین تار فشاری بتن رخ داده است. در برش پایه ی ۳۲ ton و تغییرمکان ۵۵.5cmتیرهای کوپله ی طبقات اول، تا ششم، دچار شکست برشی می شوند و یک افت شدید در منحنی ظرفیت ایجاد می شود منحنی دوباره به سمت بالا باز می گردد، تا اینکه در برش پایه ی 25ton و تغییرمکان ۱۴۵.6cm تمام تیرهای کوپله می شکنند و پس از آن سازه اندکی مقاومت می نماید و به دلیل کشش زیاد در پایه کششی و خرد شدگی پایه فشاری تا تخریب نهایی دیوار پیش می رود. تغییرمکان هدف δt = 17.7 cm محاسبه شده است که عملکرد کل سازه و دوران تیرهای کوپله و پایه ها در سطح ایمنی جانی LS می باشد.
نتیجه گیری
1- تغییرمکان نسبی بام سازه با مقادیر ذکر شده در ATC-40 مقایسه و دوران تیرهای کوپله بحرانی و پایه های دیوار، با مقادیر ذکر شده در دستورالعمل بهسازی لرزه ای ایران کنترل گردید و مشخص شد که عملکرد کلی و دوران تیرهای کوپله و پایه ها در محدوده ایمنی جانی LS قرار دارند.
2- میزان آرماتور طولی بکار رفته در دیوارها به ویژه در سازه های مرتفع، تاثیر مهمی بر مقاومت و شکل پذیری آنها دارد، بنحویکه دیوارهای با درصد آرماتور کمتر با افزایش برش پایه، سریعا دچار شکست کششی در تراز پی و طبقات پایین می شوند ولی در دیوارهای با درصد آرماتور بیشتر، پایه ها به خوبی در مقابل کشش مقاومت می کنند تا اینکه تیرهای کوپله دچار شکست می شوند.
3- افزایش بار قائم روی دیوارها موجب می شود که پایه های دیوار در هنگام زمینلرزه، دیرتر به حد جاری شدن برسند و این امر عملکرد غیرخطی دیوار را بهبود می بخشد.
4-ضعف اصلی در دیوارهایی که آرماتور طولی مناسبی دارند در تیرهای کوپله است که غالبا دچار شکست برشی- لغزشی می شوند و افزایش بیش از حد ارماتور برشی تاثیر قابل توجهی بر مقاومت برشی آنها نمی گذارد و موجب ترد شکنی نیز می شود.
5- چنانچه دیوارهای برشی دارای بازشو به نحوی طراحی شوند که تیرهای کوپله قبل از دیوارها جاری شوند، این تیرها نه تنها نقطه ضعف دیوارها نیستند بلکه در مقابل بارهای جانبی بزرگ، به منزله فیوز عمل می کنند و قبل از آنکه دیوار که وظیفه انتقال بار جانبی و قائم را دارد صدمه قابل توجهی ببیند می شکنند، که این خود موجب استهلاک انرژی زیاد و شکل پذیری بالاتر در حرکات رفت و برگشتی درطی زلزله می شود که ویژگی بسیار مطلوبی در رفتار سازه است.
منبع : ساخت و ساز ایران